Are Sport-Specific Profiles of Tendon Stiffness and Cross-Sectional Area Determined by Structural or Functional Integrity?
نویسندگان
چکیده
The present study aimed to determine whether distinct sets of tendon properties are seen in athletes engaged in sports with contrasting requirements for tendon function and structural integrity. Patellar and Achilles tendon morphology and force-deformation relation were measured by combining ultrasonography, electromyography and dynamometry in elite ski jumpers, distance runners, water polo players and sedentary individuals. Tendon cross-sectional area normalized to body mass2/3 was smaller in water polo players than in other athletes (patellar and Achilles tendon; -28 to -24%) or controls (patellar tendon only; -9%). In contrast, the normalized cross-sectional area was larger in runners (patellar tendon only; +26%) and ski jumpers (patellar and Achilles tendon; +21% and +13%, respectively) than in controls. Tendon stiffness normalized to body mass2/3 only differed in ski jumpers, compared to controls (patellar and Achilles tendon; +11% and +27%, respectively) and to water polo players (Achilles tendon only; +23%). Tendon size appears as an adjusting variable to changes in loading volume and/or intensity, possibly to preserve ultimate strength or fatigue resistance. However, uncoupled morphological and mechanical properties indicate that functional requirements may also influence tendon adaptations.
منابع مشابه
Sport-Specific Capacity to Use Elastic Energy in the Patellar and Achilles Tendons of Elite Athletes
Introduction: During running and jumping activities, elastic energy is utilized to enhance muscle mechanical output and efficiency. However, training-induced variations in tendon spring-like properties remain under-investigated. The present work extends earlier findings on sport-specific profiles of tendon stiffness and cross-sectional area to examine whether years of distinct loading patterns ...
متن کاملMechanical and material properties of the plantarflexor muscles and Achilles tendon in children with spastic cerebral palsy and typically developing children.
BACKGROUND Children with spastic cerebral palsy (CP) experience secondary musculoskeletal adaptations, affecting the mechanical and material properties of muscles and tendons. CP-related changes in the spastic muscle are well documented whilst less is known about the tendon. From a clinical perspective, it is important to understand alterations in tendon properties in order to tailor interventi...
متن کاملHuman Achilles tendon plasticity in response to cyclic strain: effect of rate and duration.
High strain magnitude and low strain frequency are important stimuli for tendon adaptation. Increasing the rate and duration of the applied strain may enhance the adaptive responses. Therefore, our purpose was to investigate the effect of strain rate and duration on Achilles tendon adaptation. The study included two experimental groups (N=14 and N=12) and a control group (N=13). The participant...
متن کاملOn muscle, tendon and high heels.
Wearing high heels (HH) places the calf muscle-tendon unit (MTU) in a shortened position. As muscles and tendons are highly malleable tissues, chronic use of HH might induce structural and functional changes in the calf MTU. To test this hypothesis, 11 women regularly wearing HH and a control group of 9 women were recruited. Gastrocnemius medialis (GM) fascicle length, pennation angle and physi...
متن کاملAge-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo.
This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Young's modulus, and hysteresis during i...
متن کامل